Expeditious Generation of Knowledge Graph Embeddings

نویسندگان

  • Tommaso Soru
  • Stefano Ruberto
  • Diego Moussallem
  • Edgard Marx
  • Diego Esteves
  • Axel-Cyrille Ngonga Ngomo
چکیده

Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases. In this paper, we propose KG2VEC, a novel approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long ShortTerm Memories. We evaluated the goodness of our embeddings on knowledge graph completion and show that KG2VEC is comparable to the quality of the scalable state-of-the-art approach RDF2Vec and can process large graphs by parsing more than a hundred million triples in less than 6 hours on common hardware.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

Not just about size - A Study on the Role of Distributed Word Representations in the Analysis of Scientific Publications

The emergence of knowledge graphs in the scholarly communication domain and recent advances in artificial intelligence and natural language processing bring us closer to a scenario where intelligent systems can assist scientists over a range of knowledge-intensive tasks. In this paper we present experimental results about the generation of word embeddings from scholarly publications for the int...

متن کامل

Learning Knowledge Graph Embeddings for Natural Language Processing

Knowledge graph embeddings provide powerful latent semantic representation for the structured knowledge in knowledge graphs, which have been introduced recently. Being different from the already widely-used word embeddings that are conceived from plain text, knowledge graph embeddings enable direct explicit relational inferences among entities via simple calculation of embedding vectors. In par...

متن کامل

TorusE: Knowledge Graph Embedding on a Lie Group

Knowledge graphs are useful for many artificial intelligence (AI) tasks. However, knowledge graphs often have missing facts. To populate the graphs, knowledge graph embedding models have been developed. Knowledge graph embedding models map entities and relations in a knowledge graph to a vector space and predict unknown triples by scoring candidate triples. TransE is the first translation-based...

متن کامل

Enriching Word Embeddings Using Knowledge Graph for Semantic Tagging in Conversational Dialog Systems

Unsupervised word embeddings provide rich linguistic and conceptual information about words. However, they may provide weak information about domain specific semantic relations for certain tasks such as semantic parsing of natural language queries, where such information about words can be valuable. To encode the prior knowledge about the semantic word relations, we present new method as follow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018